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Abstract-This paper presents the general equations for heat transfer calculations for constant wall 
temperature in laminar developed flow in ducts of arbitrary cross sections. The results obtained from these 
equations compare well with the theoretically-calculated values available in the literature for circular, 
r~tangular, triangular, elliptical and parallel plate ducts. The maxims and minjmum deviations by these 

comparisons are - 8.7 and + 8.0% respectively. 

INTRODUCTION 

WE CAN calculate the heat transfer in ducts of arbi- 
trary cross-sections with the definition of the equi- 
valent diameter only in turbulent flow. In laminar 
flow, it is not sufficient to define an equivalent diam- 
eter, because the boundary layer of each wall is influ- 
enced by the other wall. Therefore, one needs other 
additional quantities to describe the heat transfer and 
pressure drop. This is shown by Ytlmaz [I]. By using 
other quantities, it was possible to obtain a genera1 
equation for pressure drop in ducts of arbitrary cross- 
sections. There does not exist a general equation for 
the calculation of heat transfer for constant wall tem- 
perature for laminar developed flow in ducts of arbi- 
trary cross-sections. In this work, such equations will 
be given. 

HEAT TRANSFER BY DEVELOPED FLOW 

It is assumed that heat is transferred by constant 
wall temperature. Heat transfer begins at z = 0, where 
the A ow is already developed. 

Heat transfer by constant wall temperature is 
described by the Nusselt number Nu, which is defined 
as follows : 

Nu is constant for hydrodynamically and thermally 
developed flow (HTDF) and is denoted as Nu,. In 
Table 1, Nusselt numbers for various cross-sections 
for hydrodynamically and the~aIly developed flow 
are given [2]. 

For hydrodynamically-developed and thermally 
developing flow Nu can be calculated with the help 
of the following equation given by Ytlmaz and 
Cihan [3]. 

1.615@ 
z*-+O: Nu=~?~~ 

where z* is a dimensionless number 

z* = 2. 1 

d, m’ 

(2) 

Re and Pr are Reynolds and Prandtl numbers respec- 
tively : 

pr = v 
a’ 

Here, u is the average velocity, v the kinematic 
viscosity, d, the equivalent diameter and a the thermai 
diffusivity. y is the shape factor which is defined for 
the calculation of pressure drop for laminar developed 
flow : 

ap=y64LflltI 
Red, 2 ’ 

Y can be determined for different cross-sectional 
areas according to the formulas given by Ytlmaz [ 11. 

uy i= 1+ WW**(3-d*)--1 
1 +0.33d*2,25/(n- 1). (7) 

p is the density. @ is determined by the following 
equation [3] : 

Table 1. Nusselt number for HTDF for vari- 
ous shaped cross-sections 

Cross-section 

Circular 3.657 
Parallel plate 7.541 
Equilateral triangle 2.46 
Square 2.976 
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NU 
P 
T 
Ii 

.Y 

x 
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thermal diffusivity of fluid 
length of the cross-section of the duct 
cross-sectional area of the duct 
diameter 
heat transfer coefficient 
thermal conductivity 
length of the duct 
constant, equation (21) 
number of equivalent circles, 
equation (10) 
Nusselt number 
periphery of the duct 
temperature 
velocity 
coordinate of the cross-sectional area 
variable defined in equation (27) 
coordinate of the cross-sectional area, 
Fig. 2 

Y variable defined in equation (26) 
.? axial coordinate. 

Greek symbols 

AP pressure drop 
I: percent deviation 

cb heat transfer factor, equation (13) 
L’ kinematic viscosity 

density 
: heat transfer factor, equation (8) 
Y shape factor for developed flow. 

Superscript and indices 
* dimensionless 
e equivalent 
max maximum 
cc for n -+ co or z -+ xi. 

@ = 1 + c3(~,*/2)““/(~ 4-d*)]-- 1 NUSSELT NUMBER FOR HYDRODYNAMICALLY 

1 -t0,25/(n- 1) . (8) AND THERMALLY DEVELOPED FLOW 

For arbitrary cross sections, Nu must be at least 
dependent on z*, d* and n [I]. d*, n and de are defined 
as follows : 

$4 =$ 
mar 

P A 
n = - = ___. 

Pc 4 

de=?. 

(10) 

(11) 

Here, P and P, are the periphery of the duct and of 
the equivalent circle, respectively. A and A, respec- 
tively are the cross sectional area of the duct and of 
the circular tube with the equivalent diameter d,. d,,,,, 
is the maximum diameter of the circle suiting the cross 
section of the actual duct. In Fig. 1, d,,, of various 
ducts are presented. We can now expect the following 
relationship for Nu : 

Nu =f(z*,d*,n). (12) 

FIG. I. Explanation of the maximum diameter d,,,. 

For hydr~ynamically and thermally devefoped 
flow we define 

(13) 

iVu is the Nusselt number for HTDF. It is seen that 
4 is the ratio of Nu, of a duct to the Nu, = 3.657 of 
the circular duct. For n -+ co, qi is denoted by 4, and 
n -+ GO means that one dimension of the cross section 
is very large compared to the other. The definition of 
n is given in equation (10). A duct for n -+ m is shown 
in Fig. 2. 

Maclaine-Cross [4] gives the integral equation for 

4% 

(14) 

One can write for the cross sectional area 

A= hydx 
s 0 

(15) 

FIG. 2. Example for a duct with n -+ co. 
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with the definitions 

Y*+ x*=x (16) 
max 

using equations (9) and (11) and considering P z 2b 
one gets 

d* = 2 
s 

’ y* dx’. 
0’ 

(17) 

With equations (9), (16) and (17) one obtains from 
equation (14) 

4, = l.O31d* 
I 

‘y*3d_x*. 
0 

(18) 

We can calculate &, if we have a proper equation 
for y* as a function of x*. Such an equation has to 
fulfil only the conditions 

.x*=0: 4’*=0 

<x*=1: v*=1. (19) 

There are many equations fulfilling these con- 
ditions. The following simple equation suits these con- 
ditions and would be appropriate for cross section 
peripheries without a turning point : 

y* = X*m (20) 

with this equation, one obtains from equation (17) 

(21) 

Applying equations (20) and (21) to equation (18) 
we get the folIowing relationship for 4, : 

ds2 
4a = 0.5155(3_d*). (22) 

In Table 2, theoretically obtained values Nu, and 
dY for various cross sections are given [4]. These 
values and the derived equation (22) are presented in 
Fig. 3. The theoretically-obtained values are described 
with a maximum deviation of -t-6.6% as seen in 
Table 2. 

GENERAL EQUATION FOR 5, 

For n # ix), fft is dependent on d* and n. Using the 
theoretically obtained values given in the literature 
[4] one can derive the following equation with the 
methods given in ref. [8]. 

d’ 

FIG. 3. Heat transfer factor 4, for n -+ cc vs dimensionless 
diameter d*. 

tb = ‘+~:(n-l) 
4xi-1 +A+ (23) 

A4 = A4m 
0.95(n- l)O.5 

1 +O.O38(n- 1)’ (24) 

7 x lo- 3d*s 
‘km = (1 + 10d”--28)(1+64x lo-8d*28)0.5’ (25) 

In Table 3, Cp values calculated with equation (23) 
are compared with the theoretically obtained values 
given in the literature [2]. The maximum and mini- 
mum deviations between these values are less than 
+ 5.9 and - 7.6, respectively, as seen from Table 3. 

GENERAL EQUATION FOR Nu 

To obtain general equations for NM, we define new 
dimensionless quantities 

z*Nu3 
E=+. (27) 

With this coordinate transfo~ation we obtain 
only one curve for z -+ 0 and z + co. The Nusseit 
number values for parallel plates, circular, triangular, 
rectangular and elliptical ducts are given in Fig. 4 
where this is stated clearly. From these single curves 

Table 2. Comparison of the results of equation (22) with theoretical data 
-. 

9, cp, 
Duct Ref. d+ Nu Ref. value Equation (22) E (%f 

Triangular ;:; ’ 0.943 0.2578 0.2578 0 
Elliptical 1.571 3.488 0.9537 0.8903 6.6 
Parallel plate [71 2 7.541 2.062 2.062 0 
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Table 3. Comparison of equation (23) with the theoretical data 

Cross sections Ref. d* n 

Triangular [51 

Rectangular [71 

Parallel plate 171 

Circular [61 

Elliptical [61 

1.000 5.770 0.399 0.386 -3.09 
1.000 4.339 0.440 0.429 -2.43 
1.000 3.267 0.495 0.485 -1.90 
1.000 2.564 0.546 0.547 0.34 
1.000 2.088 0.607 0.613 1.12 
1.000 2.017 0.618 0.626 1.34 
1.000 1.838 0.645 0.662 2.65 
1.000 1.784 0.654 0.674 3.10 
1.000 1.681 0.669 0.699 4.60 
1 .ooo 1.666 0.672 0.703 4.72 
1.000 I.653 0.675 0.707 4.78 
1.000 1.666 0.669 0.703 5.19 
I .ooo 1.678 0.669 0.700 4.72 
1.000 I.744 0.656 0.683 4.24 
1.000 1.855 0.639 0.658 3.04 
I.000 2.856 0.519 0.518 -0.13 
I.000 4.920 0.410 0.409 -0.24 
1.000 5.251 0.401 0.399 -0.39 

I.000 1.273 0.814 0.841 3.33 
1.166 1.309 0.841 0.865 2.90 
I.200 1.326 0.853 0.870 2.09 
1.333 1.432 0.927 0.907 -2.12 
1.500 1.697 I.081 1.043 -3.45 
1.600 I.989 1.214 1.208 -0.42 
1.714 2.599 1.405 1.408 0.24 
1.778 3.222 1.531 1.487 -2.84 

2.000 co 2.062 2.062 0 

1.000 1.000 1 .ooo I.000 0 

1.108 I.018 I .003 0.989 - 1.34 
I.297 I.188 1.023 0.945 -7.60 
I.464 1.864 1.037 0.995 -4.00 
1.535 3.394 I.018 1.077 5.87 
1.599 6.575 0.997 0.956 -4.07 

dJ 
Ref. value 

4 
Equation (23) E (%) 

10 

y,Nu 
NuOO 

FIG. 4. Graphical representation of numerical results according to the definition in equations (26) and 

(27). 



Heat transfer in ducts of arbitrary cross-sections 3269 

Table 4. Comparison of equations (30) and (31) with numerical data given in literature 

Duct Ref. d* n E (%) equation (30) E (%) equation (3 1) 

Circular 

Parallel plate 

Square 

Equilateral triangular 

Rectangular 

[91 1 

[91 2 

1101 1 

[Ill 1 

Ull 1 
1.5 
1.333 
1.6 
1.666 
1.714 

1 

co 

1.273 

1.653 

1.273 
1.697 
1.432 
1.989 
2.291 
2.599 

-0.47/-3.89 0.36/-4.62 

0.24/3.70 0.13/4.91 

-3.52/0.58 -2.58jO.21 

-4.36/- 1.29 -2.94/-0.93 

-3.9311.39 -2.9910.77 
-0.86/4.16 - 1.5514.65 
-2.98/-0.03 -3.41/0.70 

0.48/3.22 3.8210.27 
2.60/l .24 2.6211.69 
3.32/1.59 4.2012.38 

Table 5. Comparison of equations (30) and (31) with our own numerical results 

Duct d* n 8 (X) equation (30) E (%) equation (31) 

Rectangular 

Isosceles triangular 

Right triangular 

Elliptical 

Circular 

1 1.273 -3.3314.17 5.62/- 3.04 
1.333 I.432 -2.47/1.73 -3.36/1.71 
1.6 1.989 3.861-2.59 4.17/-1.21 
1.818 3.851 -3.23/8.02 -2.1417.44 

1 1.666 --8.74/2.30 -7.07/2.83 
I 1.855 - 2.6214.98 -1.9716.15 
I 2.489 - 1.61/5.68 -0.74/7.08 
I 6.492 - 2.7216.06 -35317.46 

I 1.855 -7.1913.68 - 5.5214.32 
1 3.311 - 2.2613.42 -0.7414.79 
1 7.052 - 1.3713.55 -2.30/5.02 

1.107 1.018 -2.66/-1.06 - 3.05/0.45 
1.230 1.100 1.40/4.70 0.521454 

I 1 -4.341-2.46 -4.60/-0.93 

we then get the equation with the method described 
in ref. [8]. 

(28) 
1.615X- “3 

‘= ‘+ (l+l.88X”3+3.93X4’3)“2’ (29) 

Using the definition in equations (26) and (27) we 
rewrite equations (28) and (29) : 

Nu = Nu, 

These equations are compared with the theo- 
retically obtained values for ducts with circular, par- 
allel plates, elliptical and rectangular cross-sectional 
areas in Tables 4 and 5. The maximum and minimum 
deviations are - 8.7 and + 8.0% respectively. 

CONCLUSIONS 

Equations (30) and (31) have been obtained for the 
calculation of heat transfer by constant wall tem- 
perature in laminar developed flow for ducts with 
arbitrary cross-sectional shapes. It is shown that the 
given equations compare well with the theoretically- 
obtained values for circular, parallel plates, rectangu- 
lar, isosceles triangular, right triangular and elliptical 
ducts. The maximum and minimum deviations by 
these comparisons are - 8.7 and + 8.0% respectively. 
It is expected that these equations will describe Nusselt 
numbers for other shaped ducts with sufficient 
accuracy. 

REFERENCES 

I. T. Ytlmaz. General equation for pressure drop for lami- 
nar flow in ducts of arbitrary cross-sections. J. Ener,qy 
Res. Tech. 112,22&223 (1990). 

2. R. K. Shah and A. L. London, Laminar flow forced 
convection in ducts. In Advanced Heat Transfer. Aca- 
demic Press, New York (1978). 

3. T. Ytlmaz and E. Cihan, Levbque solution for heat trans- 
fer in ducts of arbitrary cross-sections (to be published). 

4. I. L. Maclaine-Cross, An approximate method for cal- 
culating heat transfer and pressure drop in ducts with 
laminar flow, J. Heat Transfer 91, 171-173 (1969). 

5. F. W. Schmidt and M. E. Newell, Heat transfer in fully 



3270 T. YJLMAZ and E. C~HAN 

developed laminar flow through rectangular and isos- 
celes triangular ducts, Znf. J. Hem/ Mass 7’rcmsJer 10, 
1121---l 123 (1967). 

6. N. 7’. Dunwoody, Thermal result for forced heat con- 
vection through elliptical duct, J. A&. Mtd7. 29, I65- 
170 (1962). 

7. R. K. Shah and A. L. London, Laminar how forced 
convection heat transfer and flow friction in straight and 
curved ducts-A summary of analytical solutians, TR 
No. 75, Dep. Mech. Eng., Stanford University. Stanford, 
California (197 1). 

8. T. Yrlmaz. General principles for obtaining of equations 
for theoretically and experimentally obtained results of 

transfer processes, /. ‘I’herrtru/ Sci. T&. Z/S, 41 46 
(1979) (in Turkish). 

9. R. K. Shah, Thermal entry length solution for the ctr- 
cular tube and parallel plates. Proc. Nurionrrl fleer/ Mcr.v., 
Transfer Cnnfl. 3rd Indim imr. Tcchnot.. Bonltxiy. Vol. 

I, Pap. No. HMT- I l-75 (IY75). 
IO, A. R. Chandrupatla and V. M. K. Sastri, Laminar forced 

convection heat transfer of a non-Newtonian fluid in a 
square duct. &l. J. Hwr Mum Trans#kr 20, 1315. I324 
(1977). 

I 1, P. Wibul~was, Laminar how heat transfer in Ilol~-~ircu~ar 
ducts, Ph.D. Thesis, London University, London 
( 1966). 


